REPRODUCING KERNEL HILBERT SPACES

DR. MATTHIEU R BLOCH

Monday, October 25, 2021

LOGISTICS

Drop date: October 30, 2021

My office hours tomorrow

- Tuesdays 8am-9am on BlueJeans (https://bluejeans.com/205357142)
- Come prepared!

Midterm 2:

- Moved to Monday November 8, 2021 (gives you weekend to prepare)
- Coverage: everything since Midterm 1 (dont' forget the fundamentals though), emphasis on regression

WHAT'S ON THE AGENDA FOR TODAY?

Last time:

Functional on Hilbert spaces

Today:

Reproducing Kernel Hilbert Spaces

Reading: Romberg, lecture notes 10/11

LAST TIME: RIESZ REPRESENTATION THEOREM

Theorem (Riesz representation theorem)

Let $F:\mathcal{F} o\mathbb{R}$ be a *continuous* linear functional on a (possible infinite dimensional) separable Hilbert space \mathcal{F} .

Then there exists $c \in \mathcal{F}$ such that $F(x) = \langle x, c
angle$ for every $x \in \mathcal{F}$

Proposition. If $\{\psi_n\}_{n\geq 1}$ is an orthobasis for \mathcal{H} , then we can construct c above as

$$c riangleq \sum_{n=1}^{\infty} F(\psi_n) \psi_n$$

REPRODUCING KERNEL HILBERT SPACES

Definition. (Reproducing Kernel Hilbert Spaces)

An RKHS is a Hilbert space \mathcal{H} of real-valued functions $f:\mathbb{R}^d \to \mathbb{R}$ in which the sampling operation $\mathcal{S}_{m{ au}}:\mathcal{H} \to \mathbb{R}: f \mapsto f(m{ au})$ is continuous for every $m{ au} \in \mathbb{R}^d$.

In other words, for each $oldsymbol{ au} \in \mathbb{R}^d$, there exists $k_{oldsymbol{ au}} \in \mathcal{H}$ s.t.

$$f(oldsymbol{ au}) = \left\langle f, k_{oldsymbol{ au}}
ight
angle_{\mathcal{H}} ext{ for all } f \in \mathcal{H}$$

Definition. (Kernel)

The kernel of an RKHS is

$$k: \mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}: (\mathbf{t}, oldsymbol{ au}) \mapsto k_{oldsymbol{ au}}(\mathbf{t})$$

where k_{τ} is the element of \mathcal{H} that defines the sampling at τ .

Proposition.

A (separable) Hilbert space with orthobasis $\{\psi_n\}_{n\geq 1}$ is an RKHS with kernel $k(\mathbf{t}, \boldsymbol{\tau}) = \sum_{n=1}^\infty \psi_n(\boldsymbol{\tau})\psi_n(\mathbf{t})$ iff $\forall \boldsymbol{\tau} \in \mathbb{R}^d \sum_{n=1}^\infty |\psi_n(\boldsymbol{\tau})|^2 < \infty$

RKHS AND NON ORTHOGONAL BASIS

If $\{\phi_n\}_{n\geq 1}$ is a Riesz basis for \mathcal{H} , we know that every $x\in\mathcal{H}$ can be written

$$x = \sum_{n \geq 1} lpha_n \phi_n$$
 with $lpha_n riangleq \langle x, \widetilde{\phi}_n
angle$

where $\{\widetilde{\phi}_n\}_{n\geq 1}$ is the dual basis.

Proposition.

A (separable) Hilbert space with Riesz basis $\{\phi_n\}_{n\geq 1}$ is an RKHS with kernel

$$k(\mathbf{t},oldsymbol{ au}) = \sum_{n=1}^{\infty} \phi_n(oldsymbol{ au}) \widetilde{\phi}_n(\mathbf{t})$$

iff
$$orall oldsymbol{ au} \in \mathbb{R}^d \sum_{n=1}^\infty \left|\phi_n(au)
ight|^2 < \infty$$

EXAMPLES

Finite dimensional Hilbert space

Space of $oldsymbol{L}$ th order polynomial splines on the real line

Remark

- RKHS are more easily characterized by their kernel
- Often, we try to avoid an explicit description of the the elements in the space

KERNEL REGRESSION

Regression problem: given n pairs $(\mathbf{x}_i, y_i) \in \mathbb{R}^d imes \mathbb{R}$, solve

$$\min_{f \in \mathcal{F}} \sum_{i=1}^n \left| y_i - f(\mathbf{x}_i)
ight|^2 + \lambda \|f\|_{\mathcal{F}}^2$$

If we restrict ${\mathcal F}$ to be an RKHS, the problem becomes

$$\min_{f \in \mathcal{F}} \sum_{i=1}^n ig| y_i - ig\langle f, x_i ig
angle_{\mathcal{F}} ig|^2 + \lambda \|f\|_{\mathcal{F}}^2$$

where $x_i riangleq k_{\mathbf{x}_i}$ provides the mapping between \mathbb{R}^d and \mathcal{F}

$$x_i: \mathbf{R}^d o \mathbb{R}: \mathbf{t} \mapsto k_{\mathbf{x}_i}(\mathbf{t}) = k(\mathbf{x}_i, \mathbf{t})$$

The solution is given by

$$\widehat{f} = \sum_{i=1}^n \widehat{lpha}_i x_i ext{ with } \widehat{oldsymbol{lpha}} riangleq (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

and $\mathbf{K} riangleq [K_{i,j}]_{1 \leq i,j \leq n}$ with $K_{i,j} = \langle x_i, x_j
angle$

KERNEL REGRESSION

Kernel magic

1.
$$K_{ij} = \langle x_i, x_j \rangle = \langle k_{\mathbf{x}_i}, k_{\mathbf{x}_j} \rangle = k_{\mathbf{x}_i}(\mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j)$$
2. $\widehat{f}(\mathbf{x}) = \langle \widehat{f}, k_{\mathbf{x}} \rangle = \sum_{i=1}^n \widehat{\alpha_i} k(\mathbf{x}_i, \mathbf{x})$

Remarks

- lacktriangle We solved an infinite dimensional problem using an n imes n system of equations and linear algebra
- lacktriangle Our solution and the evaluation only depend on the *kernel*; we never need to work directly in ${\cal F}$

Question: can we skip \mathcal{F} entirely? how do we find "good" kernels?

ARONSZJAN'S THEOREM

Definition. (Inner product kernel)

An inner product kernel is a mapping $k:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ for which there exists a Hilbert space $\mathcal H$ and a mapping $\Phi:\mathbb{R}^d o\mathcal H$ such that

$$orall \mathbf{u}, \mathbf{v} \in \mathbb{R}^d \quad k(\mathbf{u}, \mathbf{v}) = \langle \Phi(\mathbf{u}), \Phi(\mathbf{v})
angle_{\mathcal{H}}$$

Definition. (Positive semidefinite kernel)

A function $k:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ is a positive semidefinite kernel if

- lacksquare k is symmetric, i.e., $k(\mathbf{u},\mathbf{v})=k(\mathbf{v},\mathbf{u})$
- for all $\{\mathbf{x}_i\}_{i=1}^N$, the *Gram matrix* \mathbf{K} is positive semidefinite, i.e.,

$$\mathbf{x}^\intercal \mathbf{K} \mathbf{x} \geq 0 ext{ with } \mathbf{K} = [K_{i,j}] ext{ and } K_{i,j} riangleq k(\mathbf{x}_i, \mathbf{x}_j)$$

Theorem.

A function $k:\mathbb{R}^d imes\mathbb{R}^d o\mathbb{R}$ is an inner product kernel if and only if k is a positive semidefinite kernel.

EXAMPLES

Example. Regression using linear and quadratic functions in \mathbb{R}^d

Example. Regression using Radial Basis Functions

Examples of kernels

- lacksquare Homogeneous polynomial kernel: $k(\mathbf{u},\mathbf{v})=(\mathbf{u}^\intercal\mathbf{v})^m$ with $m\in\mathbb{N}^*$
- lacksquare Inhomogenous polynomial kernel: $k(\mathbf{u},\mathbf{v})=(\mathbf{u}^\intercal\mathbf{v}+c)^m$ with $c>0, m\in\mathbb{N}^*$
- lacksquare Radial basis function (RBF) kernel: $k(\mathbf{u},\mathbf{v}) = \exp\left(-rac{\|\mathbf{u}-\mathbf{v}\|^2}{2\sigma^2}
 ight)$ with $\sigma^2>0$