LEARNING

DR. MATTHIEU R BLOCH

Monday, December 6, 2021

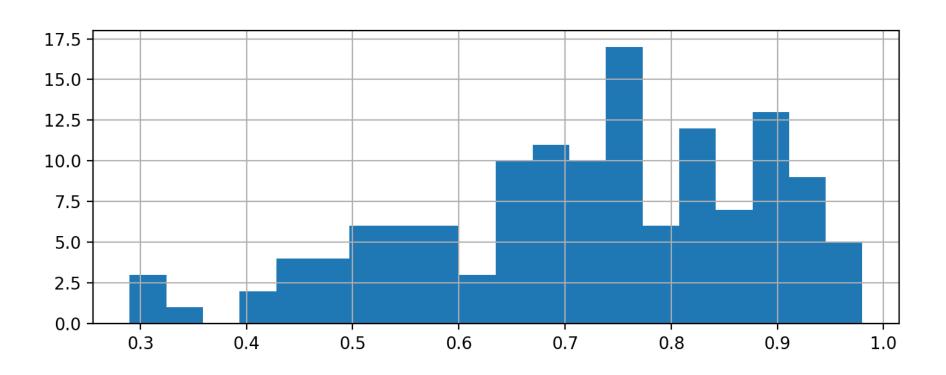
LOGISTICS

General announcements

- Assignment 6 due December 7, 2021 for bonus, deadline December 10, 2021
- Last lecture!
- Let me know what's missing
- Expect an email from me tonight

Midterm 2 statistics

• *Overall:* AVG: 72% - MIN: 29% - MAX: 98%



WHAT WE HAVE LEARNED THIS FALL

Hilbert spaces

- Spaces of functions can be manipulated almost just as easily
- Finite dimensional is fairly natural
- Infinite dimensional can be manipulated just as well using *orthobases*
- With orthobases, vectors in infinite dimensional separates Hilbert spaces are like square summable sequences

Regression

- Who knew solving y = Ax could be so useful?
- SVD provides lots of insights

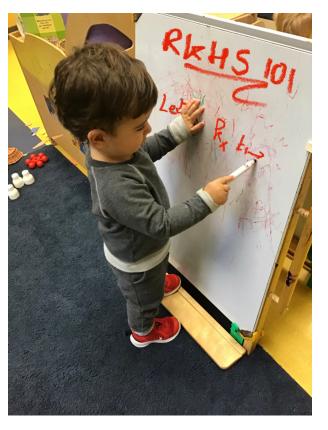
Regression in Hilbert spaces

- Perhaps biggest lesson of the course
- Representer theorem allows us to do regression in infinite dimensional Hilbert spaces
- RKHS provide the kind of Hilbert spaces that naturally embed our data

WHAT'S ON THE AGENDA FOR TODAY?

More on learning and Bayes classifiers

Lecture notes 17 and 23



Toddlers can do it!

A SIMPLER SUPERVISED LEARNING PROBLEM

Consider a special case of the general supervised learning problem

- 1. Dataset $\mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$
 - $lacksquare \{\mathbf{x}_i\}_{i=1}^N$ drawn i.i.d. from unknown $P_{\mathbf{x}}$ on \mathcal{X}
 - $lacksquare \{y_i\}_{i=1}^N$ labels with $\mathcal{Y}=\{0,1\}$ (binary classification)
- 2. Unknown $f:\mathcal{X} o\mathcal{Y}$, no noise.
- 3. Finite set of hypotheses $\mathcal{H}, |\mathcal{H}| = M < \infty$
 - $lacksquare \mathcal{H} riangleq \{h_i\}_{i=1}^M$
- 4. Binary loss function $\ell:\mathcal{Y} imes\mathcal{Y} o\mathbb{R}^+:(y_1,y_2)\mapsto \mathbf{1}\{y_1
 eq y_2\}$

In this very specific case, the true risk simplifies

$$R(h) riangleq \mathbb{E}_{\mathbf{x}y} \left[\mathbf{1}\{h(\mathbf{x})
eq y\}
ight] = \mathbb{P}_{\mathbf{x}y} \left(h(\mathbf{x})
eq y
ight)$$

The empirical risk becomes

$$\widehat{R}_N(h) = rac{1}{N} \sum_{i=1}^N \mathbf{1}\{h(\mathbf{x}_i)
eq y_i\}$$

CAN WE LEARN?

Our objective is to find a hypothesis $h^*= \mathrm{argmin}_{h\in\mathcal{H}} \widehat{R}_N(h)$ that ensures a small risk

For a fixed $h_j \in \mathcal{H}$, how does $\widehat{R}_N(h_j)$ compares to $R(h_j)$?

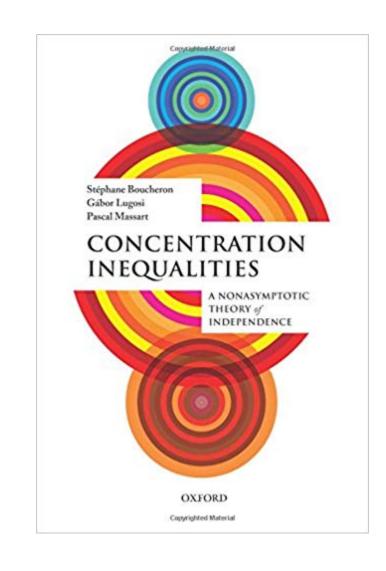
Observe that for $h_j \in \mathcal{H}$

■ The empirical risk is a sum of iid random variables

$$\widehat{R}_N(h_j)=rac{1}{N}\sum_{i=1}^N \mathbf{1}\{h_j(\mathbf{x}_i)
eq y_i\}$$

$$\mathbb{E}\left[\widehat{R}_N(h_j)
ight]=R(h_j)$$

 $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)\right|>\epsilon
ight)$ is a statement about the deviation of a normalized sum of iid random variables from its mean



CAN WE LEARN?

Our objective is to find a hypothesis $h^*= \mathrm{argmin}_{h\in\mathcal{H}} \widehat{R}_N(h)$ that ensures a small risk

For a fixed $h_j \in \mathcal{H}$, how does $\widehat{R}_N(h_j)$ compares to $R(h_j)$?

Observe that for $h_j \in \mathcal{H}$

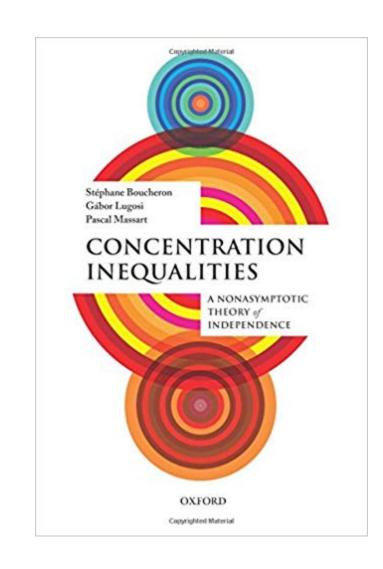
■ The empirical risk is a sum of iid random variables

$$\widehat{R}_N(h_j) = rac{1}{N} \sum_{i=1}^N \mathbf{1}\{h_j(\mathbf{x}_i)
eq y_i\}$$

$$lacksquare \mathbb{E}\left[\widehat{R}_N(h_j)
ight] = R(h_j)$$

 $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)\right|>\epsilon
ight)$ is a statement about the deviation of a normalized sum of iid random variables from its mean

We're in luck! Such bounds, a.k.a, known as concentration inequalities, are a well studied subject



CONCENTRATION INEQUALITIES: BASICS

Lemma (Markov's inequality)

Let X be a *non-negative* real-valued random variable. Then for all t>0

$$\mathbb{P}\left(X\geq t
ight)\leq rac{\mathbb{E}\left[X
ight]}{t}.$$

Lemma (Chebyshev's inequality)

Let X be a real-valued random variable. Then for all t>0

$$\mathbb{P}\left(|X-\mathbb{E}\left[X
ight]|\geq t
ight)\leq rac{\mathrm{Var}\left(X
ight)}{t^{2}}.$$

Proposition (Weak law of large numbers)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued random variables with finite mean μ and finite variance σ^2 . Then

$$\mathbb{P}\left(\left|rac{1}{N}\sum_{i=1}^{N}X_i-\mu
ight|\geq\epsilon
ight)\leqrac{\sigma^2}{N\epsilon^2}\qquad \lim_{N o\infty}\mathbb{P}\left(\left|rac{1}{N}\sum_{i=1}^{N}X_i-\mu
ight|\geq\epsilon
ight)=0.$$

BACK TO LEARNING

By the law of large number, we know that

$$orall \epsilon > 0 \quad \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}} \left(\left| \widehat{R}_N(h_j) - R(h_j) \right| \ge \epsilon \right) \le rac{\operatorname{Var} \left(\mathbf{1}\{h_j(\mathbf{x}_1) \neq y_1\} \right)}{N \epsilon^2} \le rac{1}{N \epsilon^2}$$

BACK TO LEARNING

By the law of large number, we know that

$$orall \epsilon > 0 \quad \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}}\left(\left|\widehat{R}_N(h_j) - R(h_j)\right| \geq \epsilon
ight) \leq rac{ ext{Var}\left(\mathbf{1}\{h_j(\mathbf{x}_1)
eq y_1\}
ight)}{N\epsilon^2} \leq rac{1}{N\epsilon^2}$$

Given enough data, we can *generalize*

How much data?
$$N=rac{1}{\delta\epsilon^2}$$
 to ensure $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)\right|\geq\epsilon
ight)\leq\delta$. That's not quite enough! We care about $\widehat{R}_N(h^*)$ where $h^*=\mathrm{argmin}_{h\in\mathcal{H}}\widehat{R}_N(h)$

 $lacksquare If M=|\mathcal{H}|$ is large we should expect the existence of $h_k\in\mathcal{H}$ such that $\widehat{R}_N(h_k)\ll R(h_k)$

$$\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq \mathbb{P}\left(\exists j: \left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight)$$
 (*)

Proof: Assume that $\forall h_j \in \mathcal{B} = \{h_i\}_{i=1}^{M} | \hat{R}_N(h_j) - R(h_j) | \le \epsilon \quad \text{for some } \epsilon \neq 0$ (A)

Then $|\hat{R}_N(h^*) - R(h^*)| \le \epsilon$ Hence $P(\forall_j \in \mathbb{N}_1 \cap \mathbb{N} | |\hat{R}_N(h_j) - R(h_j) | \le \epsilon) \le P(|\hat{R}_N(h^*) - R(h^*)| \le \epsilon)$ (B) $1 - P(\exists_j \in \mathbb{N}_1 \cap \mathbb{N} = + |\hat{R}_N(h_j) - R(h_j) | > \epsilon) \le 1 - P(|\hat{R}_N(h^*) - R(h^*)| > \epsilon)$ hence the result: (*)

BACK TO LEARNING

By the law of large number, we know that

$$orall \epsilon > 0 \quad \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}}\left(\left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \leq rac{\operatorname{Var}\left(\mathbf{1}\{h_j(\mathbf{x}_1)
eq y_1\}
ight)}{N\epsilon^2} \leq rac{1}{N\epsilon^2}$$

Given enough data, we can generalize

How much data?
$$N=rac{1}{\delta\epsilon^2}$$
 to ensure $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)
ight|\geq\epsilon
ight)\leq\delta.$

That's not quite enough! We care about $\widehat{R}_N(h^*)$ where $h^*= \mathrm{argmin}_{h\in\mathcal{H}} \widehat{R}_N(h)$

 $lacksquare If M=|\mathcal{H}|$ is large we should expect the existence of $h_k\in\mathcal{H}$ such that $\widehat{R}_N(h_k)\ll R(h_k)$

$$egin{aligned} \mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq \mathbb{P}\left(\exists j: \left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \ \mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq rac{M}{N\epsilon^2} \end{aligned}$$

$$P(\exists_{\delta} \text{ sh } |\hat{R}_{N}(l_{j}) - R(l_{j})| > \epsilon) \neq \sum_{\delta=1}^{r} |P(|\hat{R}_{N}(l_{ij}) - R(l_{ij})| > \epsilon) \neq \frac{N}{N\epsilon^{2}}$$

$$P(|\hat{R}_{N}(l_{ij}) - R(l_{ij})| > \epsilon \text{ or}$$

$$|\hat{R}_{N}(l_{ij}) - R(l_{ij})| > \epsilon \text{ or}$$

BACK TO LEARNING

By the law of large number, we know that

$$egin{aligned} orall \epsilon > 0 & \mathbb{P}_{\{(\mathbf{x}_i, y_i)\}}\left(\left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \leq rac{\operatorname{Var}\left(\mathbf{1}\{h_j(\mathbf{x}_1)
eq y_1\}
ight)}{N\epsilon^2} \leq rac{1}{N\epsilon^2} \end{aligned}$$

Given enough data, we can generalize

How much data?
$$N=rac{1}{\delta\epsilon^2}$$
 to ensure $\mathbb{P}\left(\left|\widehat{R}_N(h_j)-R(h_j)
ight|\geq\epsilon
ight)\leq\delta.$

That's not quite enough! We care about $\widehat{R}_N(h^*)$ where $h^*= \mathrm{argmin}_{h\in\mathcal{H}} \widehat{R}_N(h)$

lacksquare If $M=|\mathcal{H}|$ is large we should expect the existence of $h_k\in\mathcal{H}$ such that $\widehat{R}_N(h_k)\ll R(h_k)$

$$egin{aligned} \mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) & \leq \mathbb{P}\left(\exists j: \left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \ & \mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq rac{M}{N\epsilon^2} \end{aligned}$$

If we choose $N \geq \lceil rac{M}{\delta \epsilon^2}
ceil$ we can ensure $\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon
ight) \leq \delta.$

■ That's a lot of samples!

We can obtain *much* better bounds than with Chebyshev

Lemma (Hoeffding's inequality)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued zero-mean random variables such that $X_i\in[a_i;b_i]$ with $a_i < b_i$. Then for all $\epsilon>0$

$$\mathbb{P}\left(\left|\frac{1}{N}\sum_{i=1}^{N}X_{i}\right|\geq\epsilon\right)\leq2\exp\left(-\frac{2N^{2}\epsilon^{2}}{\sum_{i=1}^{N}(b_{i}-a_{i})^{2}}\right).$$

We can obtain *much* better bounds than with Chebyshev

Lemma (Hoeffding's inequality)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued zero-mean random variables such that $X_i \in [a_i;b_i]$ with $a_i < b_i$. Then for all $\epsilon>0$

$$\mathbb{P}\left(\left|rac{1}{N}\sum_{i=1}^{N}X_i
ight| \geq \epsilon
ight) \leq 2\exp\left(-rac{2N^2\epsilon^2}{\sum_{i=1}^{N}(b_i-a_i)^2}
ight).$$

In our learning problem

$$orall \epsilon > 0$$
 $\mathbb{P}\left(\left|\widehat{R}_N(h_j) - R(h_j)\right| \geq \epsilon
ight) \leq 2\exp(-2N\epsilon^2)$ $orall \epsilon > 0$ $\mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)\right| \geq \epsilon
ight) \leq 2M\exp(-2N\epsilon^2)$ (somptime to $rac{\mathsf{M}}{\mathsf{N} \epsilon^2}$)

We can obtain *much* better bounds than with Chebyshev

Lemma (Hoeffding's inequality)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued zero-mean random variables such that $X_i \in [a_i;b_i]$ with $a_i < b_i$. Then for all $\epsilon>0$

$$\mathbb{P}\left(\left|rac{1}{N}\sum_{i=1}^{N}X_i
ight| \geq \epsilon
ight) \leq 2\exp\left(-rac{2N^2\epsilon^2}{\sum_{i=1}^{N}(b_i-a_i)^2}
ight).$$

In our learning problem

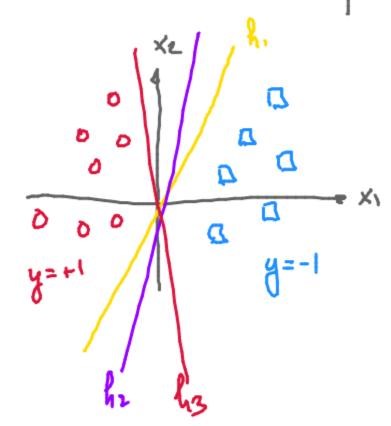
$$orall \epsilon > 0 \quad \mathbb{P}\left(\left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \leq 2\exp(-2N\epsilon^2)$$

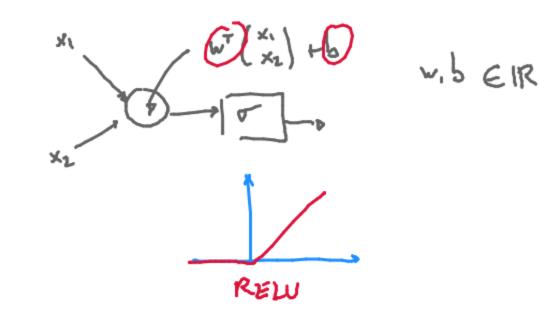
$$orall \epsilon > 0 \quad \mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq 2M \exp(-2N\epsilon^2)$$

We can now choose $N \geq \lceil rac{1}{2\epsilon^2} \left(\ln rac{2M}{\delta}
ight)
ceil$

Note: what about infinite classes of models (e.g. never network)

It is possible to extend the results to infinite classes





In has empirical risk
$$\hat{R}_{N}(k_{1}) = 0$$

 k_{2} $\hat{R}_{N}(k_{2}) = 0$
 k_{3} $\hat{R}_{N}(k_{3}) = 0$

We can obtain *much* better bounds than with Chebyshev

Lemma (Hoeffding's inequality)

Let $\{X_i\}_{i=1}^N$ be i.i.d. real-valued zero-mean random variables such that $X_i \in [a_i;b_i]$ with $a_i < b_i$. Then for all $\epsilon>0$

$$\mathbb{P}\left(\left|rac{1}{N}\sum_{i=1}^{N}X_i
ight| \geq \epsilon
ight) \leq 2\exp\left(-rac{2N^2\epsilon^2}{\sum_{i=1}^{N}(b_i-a_i)^2}
ight).$$

In our learning problem

$$orall \epsilon > 0 \quad \mathbb{P}\left(\left|\widehat{R}_N(h_j) - R(h_j)
ight| \geq \epsilon
ight) \leq 2\exp(-2N\epsilon^2)$$

$$orall \epsilon > 0 \quad \mathbb{P}\left(\left|\widehat{R}_N(h^*) - R(h^*)
ight| \geq \epsilon
ight) \leq 2M \exp(-2N\epsilon^2)$$

We can now choose $N \geq \lceil rac{1}{2\epsilon^2} ig(\ln rac{2M}{\delta} ig)
ceil$

M can be quite large (almost exponential in N) and, with enough data, we can generalize h^* .

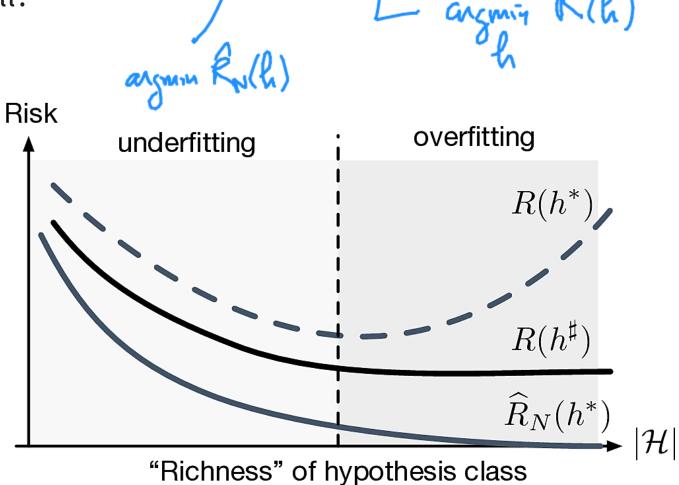
How about learning $h^\sharp riangleq \operatorname{argmin}_{h \in \mathcal{H}} R(h)$?

LEARNING CAN WORK!

Lemma.

If
$$orall j\in \mathcal{H}\left|\widehat{R}_N(h_j)-R(h_j)
ight|\leq \epsilon$$
 then $\left|R(h^*)-R(h^\sharp)
ight|\leq 2\epsilon.$

How do we make $R(h^\sharp)$ small?



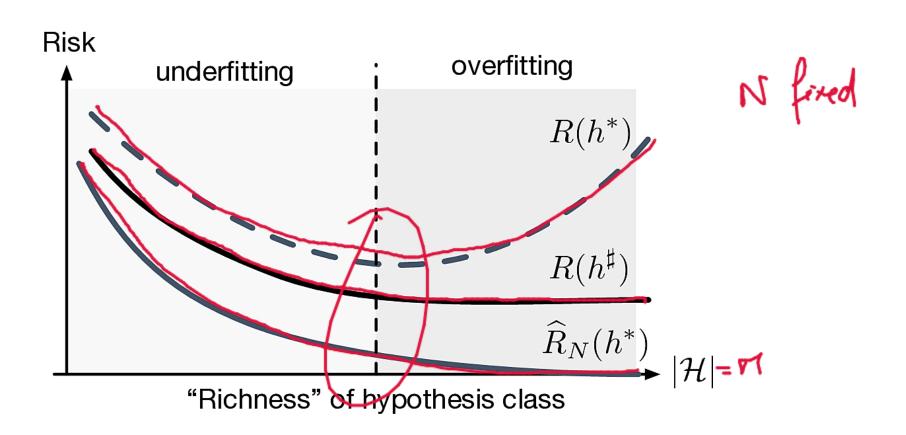
LEARNING CAN WORK!

Lemma.

If
$$orall j \in \mathcal{H}\left|\widehat{R}_N(h_j) - R(h_j)
ight| \leq \epsilon$$
 then $\left|R(h^*) - R(h^\sharp)
ight| \leq 2\epsilon$.

How do we make $R(h^\sharp)$ small?

- lacktriangle Need bigger hypothesis class $\mathcal{H}!$ (could we take $M o \infty$?)
- Fundamental trade-off of learning



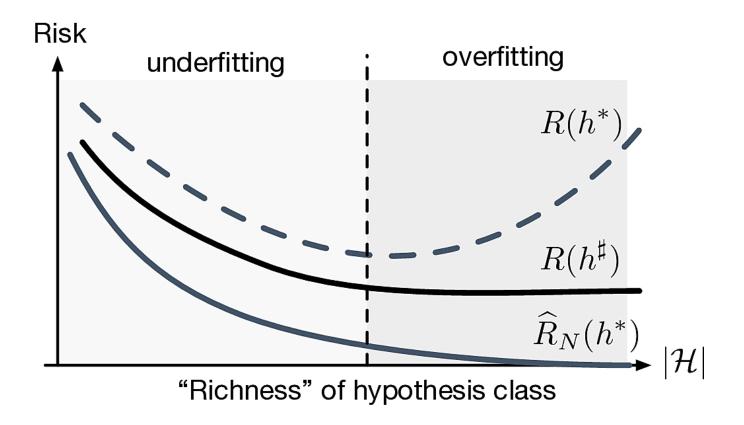
LEARNING CAN WORK!

Lemma.

If
$$orall j \in \mathcal{H}\left|\widehat{R}_N(h_j) - R(h_j)
ight| \leq \epsilon$$
 then $\left|R(h^*) - R(h^\sharp)
ight| \leq 2\epsilon$.

How do we make $R(h^\sharp)$ small?

- Need bigger hypothesis class \mathcal{H} ! (could we take $M \to \infty$?)
- Fundamental trade-off of learning



PROBABLY APPROXIMATELY CORRECT LEARNABILITY

Definition. (PAC learnability)

A hypothesis set \mathcal{H} is (agnostic) PAC learnable if there exists a function $N_{\mathcal{H}}:]0;1[^2 o\mathbb{N}$ and a learning algorithm such that:

- lacksquare for very $\epsilon,\delta\in]0;1[$,
- lacksquare for every $P_{\mathbf{x}}, P_{y|\mathbf{x}},$
- when running the algorithm on at least $N_{\mathcal{H}}(\epsilon,\delta)$ i.i.d. examples, the algorithm returns a hypothesis $h\in\mathcal{H}$ such that

$$\mathbb{P}_{\mathbf{x}y}\left(\left|R(h)-R(h^\sharp)
ight|\leq\epsilon
ight)\geq 1-\delta$$

The function $N_{\mathcal{H}}(\epsilon,\delta)$ is called *sample complexity*

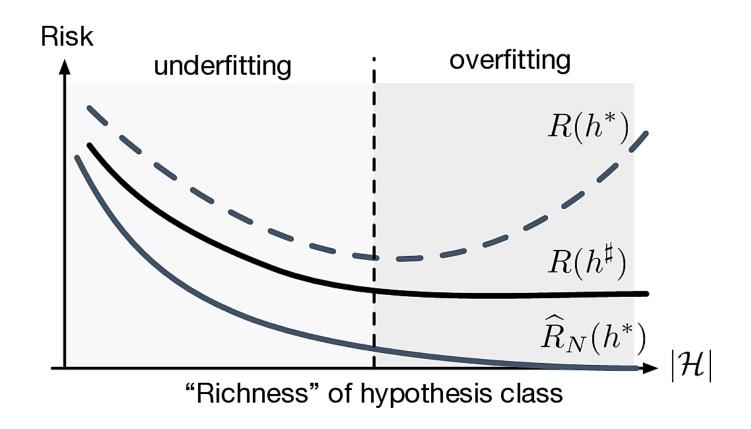
We have effectively already proved the following result

Proposition.

A finite hypothesis set ${\cal H}$ is PAC learnable with the Empirical Risk Minimization algorithm and with sample complexity

$$N_{\mathcal{H}}(\epsilon,\delta) = \lceil rac{2 \ln(2|\mathcal{H}|/\delta)}{\epsilon^2}
ceil$$

WHAT IS A GOOD HYPOTHESIS SET?



Ideally we want $|\mathcal{H}|$ small so that $R(h^*) pprox R(h^\sharp)$ and get lucky so that $R(h^*) pprox 0$ In general this is *not* possible

Remember, we usually have to learn $P_{y|\mathbf{x}}$, not a function f

Questions

- What is the optimal binary classification hypothesis class?
- How small can $R(h^*)$ be?

SUPERVISED LEARNING MODEL

We revisit the supervised learning setup (*slight* change in notation)

- 1. Dataset $\mathcal{D} riangleq \{(X_1,Y_1),\cdots,(X_N,Y_N)\}$
 - $lacksquare \{X_i\}_{i=1}^N$ drawn i.i.d. from unknown P_X on $\mathcal{X}=\mathbb{R}^d$
 - $lacksquare \{Y_i\}_{i=1}^{N}$ labels with $\mathcal{Y}=\{0,1,\cdots,K-1\}$ (multiclass classification)
- 2. Unknown $P_{Y\mid X}$
- 3. Binary loss function $\ell:\mathcal{Y} imes\mathcal{Y} o\mathbb{R}^+:(y_1,y_2)\mapsto \mathbf{1}\{y_1
 eq y_2\}$

The risk of a classifier h is

$$R(h) \triangleq \mathbb{E}_{XY} \left[\mathbf{1} \{ h(X) \neq Y \} \right] = \mathbb{P}_{XY} \left(h(X) \neq Y \right)$$

We will not directly worry about ${\cal H}$, but rather about $R(\hat h_N)$ for some $\hat h_N$ that we will estimate from the data

BAYES CLASSIFIER

What is the *best* risk (smallest) that we can achieve?

- lacksquare Assume that we actually know P_X and $P_{Y|X}$
- lacksquare Denote the *a posteriori* class probabilities of $\mathbf{x} \in \mathcal{X}$ by

$$\eta_k(\mathbf{x}) riangleq \mathbb{P}\left(Y = k | X = \mathbf{x}
ight)$$

■ Denote the *a priori* class probabilities by

$$\pi_k riangleq \mathbb{P} \ (Y=k)$$

Lemma (Bayes classifier)

The classifier $h^{\mathrm{B}}(\mathbf{x}) \triangleq \mathrm{argmax}_{k \in [0;K-1]} \eta_k(\mathbf{x})$ is optimal, i.e., for *any* classifier h, we have $R(h^{\mathrm{B}}) \leq R(h)$.

$$R(h^{\mathrm{B}}) = \mathbb{E}_X \left[1 - \max_k \eta_k(X)
ight]$$

Terminology

- h^B is called the *Bayes classifier*
- $lacksquare R_B riangleq R(h^B)$ is called the *Bayes risk*

OTHER FORMS OF THE BAYES CLASSIFIER

$$h^{\mathrm{B}}(\mathbf{x}) riangleq \mathrm{argmax}_{k \in [0;K-1]} \eta_k(\mathbf{x})$$

$$h^{ ext{B}}(\mathbf{x}) riangleq ext{argmax}_{k \in [0;K-1]} \pi_k p_{X|Y}(\mathbf{x}|k)$$

For K=2 (binary classification): log-likelihood ratio test

$$\log rac{p_{X|Y}(\mathbf{x}|1)}{p_{X|Y}(\mathbf{x}|0)} \gtrless \log rac{\pi_0}{\pi_1}$$

If all classes are equally likely $\pi_0=\pi_1=\dots=\pi_{K-1}$

$$h^{ ext{B}}(\mathbf{x}) riangleq rgmax p_{X|Y}(\mathbf{x}|k) \ _{k \in [0;K-1]}$$

Example (Bayes classifier)

Assume $X|Y=0\sim\mathcal{N}(0,1)$ and $X|Y=1\sim\mathcal{N}(1,1)$. The Bayes risk for $\pi_0=\pi_1$ is $R(h^{\mathrm{B}})=\Phi(-\frac{1}{2})$ with $\Phi\triangleq\mathrm{Normal\ CDF}$

In practice we do not know P_X and $P_{Y\mid X}$

■ *Plugin methods*: use the *data* to learn the distributions and plug result in Bayes classifier

NEAREST NEIGHBOR CLASSIFIER

Back to our training dataset $\mathcal{D} riangleq \{(\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)\}$

Definition. ((1) nearest neighbor classifier)

The *nearest-neighbor* (NN) classifier is $h^{ ext{NN}}(\mathbf{x}) riangleq y_{ ext{NN}(\mathbf{x})}$ where $ext{NN}(\mathbf{x}) riangleq \operatorname{argmin}_i \|\mathbf{x}_i - \mathbf{x}\|$

Risk of NN classifier conditioned on ${\bf x}$ and ${\bf x}_{{
m NN}({\bf x})}$

$$R_{ ext{NN}}(\mathbf{x},\mathbf{x}_{ ext{NN}(\mathbf{x})}) = \sum_k \eta_k(\mathbf{x}_{ ext{NN}(\mathbf{x})})(1-\eta_k(\mathbf{x})) = \sum_k \eta_k(\mathbf{x})(1-\eta_k(\mathbf{x}_{ ext{NN}(\mathbf{x})})).$$

lacksquare How well does the average risk $R_{
m NN}=R(h^{
m NN})$ compare to the Bayes risk for large N?

Lemma.

Let \mathbf{x} , $\{\mathbf{x}_i\}_{i=1}^N$ be i.i.d. $\sim P_{\mathbf{x}}$ in a separable metric space \mathcal{X} . Let $\mathbf{x}_{\mathrm{NN}(\mathbf{x})}$ be the nearest neighbor of \mathbf{x} . Then $\mathbf{x}_{\mathrm{NN}(\mathbf{x})} \to \mathbf{x}$ with probability one as $N \to \infty$

Theorem (Binary NN classifier)

Let $\mathcal X$ be a separable metric space. Let $p(\mathbf x|y=0)$, $p(\mathbf x|y=1)$ be such that, with probability one, $\mathbf x$ is either a continuity point of $p(\mathbf x|y=0)$ and $p(\mathbf x|y=1)$ or a point of non-zero probability measure. As $N\to\infty$,

$$R(h^{\mathrm{B}}) \leq R(h^{\mathrm{NN}}) \leq 2R(h^{\mathrm{B}})(1-R(h^{\mathrm{B}}))$$

K NEAREST NEIGHBORS CLASSIFIER

Can drive the risk of the NN classifier to the Bayes risk by increasing the size of the neighborhood

lacksquare Assign label to old x by taking majority vote among K nearest neighbors $h^{K ext{-NN}}$

$$\lim_{N o\infty}\mathbb{E}\left[R(h^{K ext{-NN}})
ight] \leq \left(1+\sqrt{rac{2}{K}}
ight)\!R(h^{\mathrm{B}})$$

Definition.

Let \hat{h}_N be a classifier learned from N data points; \hat{h}_N is *consistent* if $\mathbb{E}\left[R(\hat{h}_N)
ight] o R_B$ as $N o\infty$.

Theorem (Stone's Theorem)

If
$$N o \infty$$
 , $K o \infty$, $K/N o 0$, then $h^{K ext{-NN}}$ is consistent

Choosing $oldsymbol{K}$ is a problem of model selection

lacktriangle Do *not* choose K by minimizing the empirical risk on training:

$$\widehat{R}_N(h^{ ext{1-NN}}) = rac{1}{N} \sum_{i=1}^N \mathbf{1}\{h_1(\mathbf{x}_i) = y_i\} = 0$$

Need to rely on estimates from model selection techniques (more later!)